Сопромат, механика, информатика. Теория, практика, задачи Математика, физика

Курс лекций по строительной механике
Задачи по строительной механике
Лабораторные работы по электронике
Лекции по сопромату, теория, практика, задачи
Моменты инерции сложных фигур
Деформации и перемещения при
кручении валов
Определение опорных реакций
Понятие об устойчивости
Внутренние силы. Метод сечения
Курс высшей математики
Понятие множества
Исследование функции, построение графика
Пределы функции
Основные теоремы о пределах
Непрерывность функции
Дифференциальное исчесление
Основные правила дифференцирования
Дифференциал функции
Производные и дифференциалы высших порядков
Правило Лопиталя
Формула Тейлора
Решение типовых задач
Исследование функций и построение их графиков
Типовой расчет по высшей математике
Образец выполнения типового расчёта
Интегрирование
Признак сходимости Коши (радикальный)
Производная и дифференциал функции двух переменных
Задачи приводящие к понятию определенного интеграла
Свойства определенного интеграла
Понятие производной по направлению
Ряды с неотрицательными членами.
Знакопеременные ряды
Функциональные ряды
Свойства степенных рядов
Курс лекций по физике
Колебания и волны
Анализ колебаний в нелинейных цепях
Примеры анализа свободного колебаний
Линейные параметрические цепи
Особенности задач анализа колебаний
в нелинейных цепях
Начертательная геометрия
Компьютерные информационные технологии
Корпоративные информационные системы
Выбор системы автоматизации
документооборота
Корпоративные сети
Администрирование компьютерных сетей.
Средства управления безопасностью сетей
Курс лекций по истории искусства
Культура ранних цивилизаций
Искусство Шумера
Культура Древнего Египта
Культура Мезоамерики. Инкская цивилизация
Литература древних майя
Древнееврейская культура
Культура Древней Индии
Корпоративные информационные системы
Основная идея технологии "клиент-сервер"
Информационное обеспечение
корпоративных информационных систем.
Сетевое обеспечение корпоративных
информационных систем
Развитие телекоммуникационных и
сетевых технологий.
Корпоративные базы данных
Искусственный интеллект (ИИ)
Энергосберегающие технологии
Системы теплоснабжения
Региональный опыт энергосбережения
Повышение энергоэффективности теплосетей
Развитие нетрадиционной энергетики
Ветроэнергетика в России
Солнечная энергетика в России
Гелиоэнергетика.
Использование солнечной энергии
Геотермальная энергия
Геотермальное теплоснабжение
Мини-теплоэлектростанция на отходах
Использование водной энергии земли
Лекции по электротехнике
Линейные цепи постоянного тока
Закон Ома
Источник ЭДС и источник тока
Линейные цепи синусоидального тока
Неразветвленная цепь синусоидального тока
Электрические цепи с взаимной индуктивностью
Переходные процессы в электрических сетях
Магнитное поле и магнитные цепи
Расчет неразветвленных магнитных цепей
Электромагнитные устройства Трансформаторы
Электрические машины переменного тока
Энергетический баланс асинхронного двигателя
Однофазный асинхронный двигатель
Параллельная работа синхронного генератора с сетью
Лекции по электронике
Электронные приборы и устройства
Биполярные транзисторы
Интегральные микросхемы
Электронные усилители и генераторы
Генераторы синусоидальных колебаний
Коммутационные схемы
Источники питания электронных устройств
Трехфазные выпрямители
Цифровой измерительный прибор
Измерение тока и напряжения
Гальванические преобразователи
Энтропия и информация

Курс лекций по строительной механике

  • Настоящий курс лекций по строительной механике написан в соответствии со стандартом для специальности «Автомобильные дороги и аэродромы». Авторами он многократно прочитан студентам факультета «Автомобильные дороги и мосты» Сибирской государственной автомобильно-дорожной академии (СибАДИ), обучающимся по специальности «Автомобильные дороги и аэродромы». В предлагаемом курсе лекций излагаются основы классической строительной механики, без глубокого осмысления которых невозможно освоение современных методов расчёта сооружений, использующих многочисленные программные продукты.
  • Опоры Для того чтобы в процессе создания и последующей эксплуатации сооружение оставалось геометрически неизменяемым и неподвижным по отношению к основанию (как говорят в строительной механике, к земле), сооружение с землёй соединяют специальными устройствами, называемыми опорами, каждая из которых лишает сооружение определённого числа степеней свободы. Всякое устройство, отнимающее у жёсткого диска одну степень свободы, называется простой кинематической связью.
  • Геометрический анализ изменяемости стержневых систем Число степеней свободы n сооружения в целом может быть определено по формуле П.Л. Чебышева
  • Расчет многопролетных статически определимых балок
  • Силовой расчет механизмов с учетом сил трения
  • Расчёт стержневых конструкций на действие подвижной нагрузки К подвижной нагрузке, оказывающей внешнее силовое воздействие на сооружения, относят автомобильный и железнодорожный транспорт, мостовые краны и т.д. Особенностью расчёта сооружений на подвижную нагрузку является то, что для оценки напряжённо-деформированного состояния во всех поперечных сечениях по длине сооружения необходимо фиксировать бесконечно большое число раз подвижную нагрузку, превращая её в статическую. Такой расчёт, естественно, нерационален. Поэтому при расчёте сооружений на подвижную нагрузку не строят эпюры внутренних усилий, описывающих их изменение по длине сооружения.
  • Линии влияния внутренних усилий При построении линий влияний внутренних усилий рассматривают два положения подвижной единичной силы - слева и справа от рассматриваемого сечения. При этом рассматривают равновесие той части балки, на которой в данный момент отсутствует подвижная сила.
  • Линии влияния усилий в сечениях многопролётных статически определимых балок Отличительной особенностью линий влияния опорных реакций и усилий в многопролётных статически определимых балках является то, что их построение начинают с той балки, в которой требуется построить линию влияния. Это делают так, как изложено ранее. После этого исследуют влияние на рассматриваемое усилие различного положения подвижной единичной силы на других балках. На рис. 2.11 показан числовой пример построения различных линий влияния для многопролётной статически определимой балки.
  • Кинематический способ построения линий влияния основан на принципе возможных перемещений (принцип Лагранжа). Если система твёрдых тел, связанная между собой идеальными связями, находится в равновесии, то сумма работ всех заданных сил на любых сколь угодно малых возможных перемещениях равна нулю.
  • Определение расчётного положения подвижной системы нагрузок Расчётное положение подвижной системы сосредоточенных сил над линией влияния усилия S соответствует max или min искомой величины этого усилия. В общем случае искомое усилие S может иметь несколько экстремальных (max или min) значений.
  • Узловая передача нагрузки В конструкциях транспортных сооружений внешняя, в частности подвижная, нагрузка на несущие элементы передаётся через вспомогательные элементы. Имеет место так называемая узловая передача нагрузки.
  • Расчет распорных систем Распорной называется такая система, в результате действия на которую вертикальных внешних нагрузок в ней возникают наклонные опорные реакции.
  • Расчёт трёхшарнирной арки на статическую нагрузку Как и любой расчёт, расчёт трёхшарнирной арки начинают с определения опорных реакций
  • Расчёт трёхшарнирной арки на подвижную нагрузку Расчёт на подвижную нагрузку предполагает построение линий влияния всех искомых параметров, определяющих напряжённо-деформированное состояние рассчитываемой конструкции.
  • Определение напряжений в сечениях арки Нормальные напряжения в поперечных сечениях арки, испытывающих деформацию внецентренного сжатия, определяют по формуле, известной из курса сопротивления материалов
  • Рациональное очертание оси арки Рациональной осью трёхшарнирной арки заданного пролёта и заданной стрелы подъёма называется такая ось, при которой требуемые условиями прочности поперечные сечения арки будут наименьшими. Очевидно, что наименьшая величина нормального напряжения, согласно выражению (3.11), будет в том случае, когда значение изгибающего момента в сечении будет равно нулю.
  • Понятие о ферме Реальные фермы являются многократно статически неопределимыми системами, так как стержни в узлах соединены между собой жестко. Точный расчет таких ферм требует выполнения объемных вычислений. Однако, как показывают сравнительные расчеты, при действии на стальные фермы узловой нагрузки усилия в стержнях ферм с жесткими узлами мало отличаются от усилий в ферме с шарнирным соединением стержней в узлах. Это позволяет определять усилия в стержнях ферм способом вырезания узлов и методом сечений.
  • Определение перемещений в упругих системах Всякое сооружение под действием  приложенных к нему внешних нагрузок и воздействий (сосредоточенные и распределённые нагрузки, осадка опор, температура и др.) изменяет свою первоначальную форму, т.е. все точки этого сооружения получают перемещения.
  • Действительная работа внешних сил При определении работы внешних сил рассматривается статическое приложение нагрузки, когда она в процессе приложения к конструкции достаточно медленно возрастает от нуля до какого-то конечного значения и в дальнейшем остаётся неизменной.
  • Действительная работа внутренних сил
  • Работа от действия поперечной силы
  • Возможная работа внешних сил
  • Возможная работа внутренних сил Определим возможную работу внутренних сил N, M и Q одного состояния на перемещениях, вызванных внутренними силами другого состояния
  • Определение перемещений. Интеграл Мора
  • Правило П. Верещагина На практике часто встречаются случаи, когда на отдельных участках стержни имеют одинаковые физические и геометрические параметры, а одна из подынтегральных функций изменяется линейно.
  • Определение перемещений от действия температуры
  • Понятие о статической неопределимости Статически неопределимыми называются такие стержневые системы, для оценки напряжённо-деформированного состояния которых недостаточно трёх уравнений статики. Для того чтобы осуществить оценку напряжённо-деформированного состояния таких систем, необходимо составить дополнительные уравнения.
  • Основная система метода сил Любой способ раскрытия статической неопределимости предполагает выбор для заданной системы основной системы. В методе сил основную систему выбирают из заданной, устраняя «лишние» связи. За «лишние» могут быть приняты как внешние, так и внутренние связи. Внешние связи являются опорными связями, а внутренними являются связи, препятствующие взаимному перемещению двух смежных сечений при мысленном рассечении стержня или удалении из него шарнира.
  • Определение коэффициентов канонических уравнений Вычисление коэффициентов при неизвестных системы канонических уравнений метода сил и её грузовых членов, представ­ляющих единичные и грузовые перемещения, проводится с по­мощью известных методов определения перемещений, изложенных в предыдущем разделе.
  • Построение эпюр внутренних усилий в заданной системе Основная система, в которой определены значения всех «лишних» неизвестных, представляет собой статически определимую систему с действующими на неё заданной внешней нагрузкой и усилиями . Для пoстроения эпюр внутренних усилий M, N, Q составляются аналитические выра­жения этих внутренних усилий для характерных участков рассчитываемой конструкции.
  • Проверки правильности построенных эпюр
  • Расчёт статически неопределимой рамы на осадку опор Опорные закрепления любой строительной конструкции могут перемещаться. Чаще всего это может проявляться при осадке фундаментов. От этих перемещений статически неопределимая система деформируется и в её элементах возникают внутренние усилия. Поэтому необходимо производить расчёт таких систем c учётом  перемещений их опорных связей.
  • Уравнение трех моментов Неразрезной называется статически неопределимая балка, прикреплённая к земле более чем тремя простыми кинематическими связями.
  • Определение моментных фокусных отношений Рассмотрим некоторый участок неразрезной балки с загруженным только одним пролётом и с построенной для этого случая эпюрой моментов. Если каким-то образом изменить величину силы F загруженного пролёта, то соответственно изменятся и ординаты этой эпюры. Но форма эпюры никак не изменится, а в незагруженных пролётах останутся неизменными положения нулевых точек, которые называются фокусными точками. Точки, расположенные правее загруженного пролета, называются правыми, а левее - левыми фокусами.
  • Определение моментов на опорах загруженного пролёта При расчёте неразрезных балок, прежде чем воспользоваться моментными фокусными отношениями, необходимо найти значения моментов на опорах загруженных пролётов.
  • Линии влияния опорных моментов Как известно, расчёт любого сооружения на подвижную нагрузку предполагает построение линий влияния усилий. В связи с тем, что неразрезная балка является статически неопределимой системой,  сна-чала нужно раскрыть эту статическую неопределимость, то есть построить линии влияния «лишних» неизвестных. В настоящем подразделе показано, что для неразрезной балки «лишними» неизвестными являются опорные моменты.
  • Линии влияния моментов для сечений, расположенных в пролётах неразрезной балки После построения линий влияния опорных моментов (раскрытие статической неопределимости системы) можно приступать к построению линий влияния внутренних усилий в сечениях неразрезной балки.
  • Линии влияния поперечных сил
  • Расчет статически неопределимых систем методом перемещений Основы метода Метод перемещений в строительной механике является во многом основополагающим для большинства современных методов (метод конечных элементов и др.) раскрытия статической неопределимости сложных стержневых конструкций.
  • Канонические уравнения метода перемещений В каждой условно введенной связи основной системы возникают реактивные усилия как от действия внешней нагрузки, так и от смещения связей. В заделках возникают реактивные моменты, а в линейных связях - реактивные усилия.
  • Основы динамики стержневых систем В предыдущих разделах был рассмотрен расчёт стержневых систем при действии на них статических нагрузок. Однако в практике создания и эксплуатации транспортных сооружений большинство нагрузок являются такими, которые во времени изменяют и свою величину, и направление действия.
  • Собственные колебания систем с одной степенью свободы без учёта сил сопротивления внешней среды Рассмотрим невесомую балку, весом которой по сравнению с массой m пренебрегаем
  • Вынужденные колебания системы с одной степенью свободы
  • Собственные колебания системы с конечным числом степеней свободы Рассмотрим балку с n сосредоточенными массами, которые совершают собственные колебания в вертикальной плоскости. Вращения, горизонтальные смещения масс и силы сопротивления внешней среды при анализе колебательного процесса не учитываются.
  • Вынужденные колебания систем с n степенями свободы
  • Расчет рамы на динамическое действие нагрузки Рассмотрим статически определимую раму, на горизонтальном элементе которой находятся колеблющиеся массы.
  • Определение инерционных сил
  • Устойчивость стержневых систем Под устойчивостью понимают способность элементов конструкций сохранять первоначальное положение равновесия при действии на них сжимающих нагрузок. Устойчивость является необходимым условием для каждой инженерной конструкции. Когда первоначальная форма равновесия становится неустойчивой, происходит потеря устойчивости конструкции. Потеря устойчивости может привести к разрушению как отдельного элемента, так и конструкции в целом.
  • Определение изгибающих моментов и поперечных сил в опорных сечениях
  • Для успешного усвоения курса строительной механики необходимо прежде всего повторять основные положения курсов теоретической механики (статики) и сопротивления материалов, касающихся условий равновесия сил на плоскости и в пространстве, понятий прочности, жесткости и устойчивости, использования метода сечений для определения внутренних усилий. Первым этапом расчёта сооружения является обычно определение опорных реакций. Поэтому необходимо твердо усвоить основные типы опор, применяемых в расчетных схемах, уметь определять возникающие в них реакции и направления возможных перемещений. Необходимо учитывать, что в учебной литературе изображение шарнирно-подвижных и шарнирно-неподвижных опор несколько отличается от изображений, установленных стандартами (ЕСКД). В настоящем пособии изображение опор дается по ЕСКД.
  • СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ СТЕРЖНЕВЫЕ СИСТЕМЫ Методы определения усилий от неподвижной нагрузки (на примерах простейших балочных систем) Общие сведения о нагрузках и внутренних усилиях известны студенту из курса сопротивления материалов, однако важность этого вопроса требует повторения основных понятий и в первую очередь метода сечений и правил построения эпюр внутренних сил, зависимостей между эпюрами и нагрузкой. Весьма полезно ознакомиться с кинематическим методом. Метод замены связей целесообразнее рассмотреть при изучении темы 3 Плоские фермы
  •  Плоские фермы При аналитическом определении усилий в стержнях фермы используется метод сечений. Анализ геометрической неизменяемости и статической определимости удобно проводить по формуле, устанавливающей соотношение между числом узлов и стержней.
  • Определение перемещений и некоторые основные теоремы строительной механики Расчет сооружений на жесткость связан с определением их деформаций, т. е. вычислением перемещений отдельных точек. Кроме того, умение определять перемещения является основой для расчета статически неопределимых систем, поэтому усвоение этой темы имеет большое значение для всей второй части курса.
  •  Метод сил Изучение темы следует начать с понятия статической неопределимости и методов подсчета числа лишних связей.
  • Матричный алгоритм расчета неразрезной балки может быть получен по общим для метода сил принципам или матричной записью системы уравнений трех моментов. В заключение полезно в общих чертах разобрать порядок расчета неразрезных балок на упругоподатливых опорах.
  • Неразрезные балки Уравнения трех моментов для расчета неразрезных балок получены благодаря удачному выбору основной системы: При использовании этих уравнений очень важно помнить, при каком направлении опорных моментов они выведены. Без этого при решении задач нельзя будет правильно учесть, знаки полученных неизвестных Необходимо обратить внимание на использование уравнений трех моментов при наличии загруженной консоли и в случае заделки одного или обоих концов.
  • Смешанный метод. Сравнение методов расчета Смешанный метод расчета статически неопределимых рам основан на удачном сочетания преимуществ метода сил для одних и метода перемещений для других типов рам
  • Основные вариационные принципы и методы строительной механики Знакомство с вариационными принципами строительной механики можно ограничить принципами Лагранжа и Кастильяно. Следует рассмотреть приложение принципа Кастильяно к расчету пластинок
  • Устойчивость тонкостенных стержней и пластин Специальные вопросы устойчивости могут .быть изучены в общих чертах. К сожалению, в приведенных выше источниках не все вопросы темы освещены, часть из них, например, устойчивость пластин, рассматривается в курсах теории упругости.
  • Расчет статически определимой многопролетной балки
  • Расчет трехшарнирной арки или трехшарнирной рамы
  • Расчет простой плоской статически определимой фермы
  • Определение перемещений в статически определимой балке
  • Расчет плоской статически неопределимой рамы методом сил
  • Расчет неразрезной балки
  • Расчет статически неопределимой фермы
  • Расчет плоской рамы на устойчивость
  • Лекции по черчению, начертательной геометрии

  • Введение в черчение Рисунок и чертеж сопровождают нас всю жизнь, помогая разобраться в самых разнообразных вопросах науки, техники и искусства. В давние времена у человека появилась необходимость изобразить то, что он видел, а позже то, что ему нужно было сделать. Древние графические изображения – это пещерная живопись, рисунки на камнях, папирусы, стенная живопись – постепенно совершенствовалась, складывались и обобщались правила их построения.
  • Линии Чтобы чертеж был выразительным и легко читался, он должен быть оформлен линиями различной толщины и формы. Линии чертежа должны иметь начертание в соответствии с их назначением по ГОСТ 2.303-68.
  • Русский алфавит (кириллица)
  • Чертежи сопровождаются основной надписью по ГОСТ 2.104-2006, которую располагают в его правом нижнем углу. Порядок выполнения основной надписи
  • Сопряжения Очертания многих предметов представляют собой сочетание ряда: линий, в большинстве своем плавно переходящих одна в другую. Примером плавных переходов могут служить контуры различных видов художественных изделий, посуды, рисунки орнаментов и т.п.
  • Построение касательных к двум окружностям При вычерчивании контуров предметов сравнительно часто приходится строить общие касательные к двум дугам окружностей. Общая касательная к двум окружностям может быть внешней, если обе окружности расположены с одной стороны от нее, и внутренней, если окружности расположены с разных сторон касательной.
  • Вычерчивание контуров деталей Последовательность вычерчивания контуров деталей, в основном, зависит от их формы. Поэтому можно указать только на некоторые общие положения, справедливые для всех случаев.
  • Плоские кривые Кривые, у которых все точки расположены в одной плоскости, называют плоскими. Часть плоских кривых, состоящих из дуг окружностей, образует группу циркульных кривых. Дуги циркульных кривых касаются друг друга, поэтому построение их основано на правилах сопряжения и выполняется при помощи циркуля.
  • Лекальные кривые – это такие кривые, которые могут быть вычерчены только с помощью лекала по предварительно построенным точкам. Лекальные кривые широко применяются в очертаниях различных деталей и предметов. Это могут быть профили зубчатых колес и кулачков, очертания кронштейнов, подвесок, посуды и мебели. Лекальные кривые могут быть также получены в результате сечения цилиндра, конуса и других тел вращения плоскостью.
  • Гипербола. Если рассечь прямой и обратный конусы плоскостью, параллельной двум его образующим или в частном случае параллельной оси, то в плоскости сечения получится гипербола, состоящая из двух симметричных ветвей
  • Синусоида. Синусоидой называется проекция траектории точки, движущейся по цилиндрической винтовой линии, на плоскость, параллельную оси цилиндра. Движение точки складывается из равномерно–вращательного движения (вокруг оси цилиндра) и равномерно–поступательного (параллельно оси цилиндра). Синусоида – это плоская кривая, которая показывает изменение тригонометрической функции синуса в зависимости от изменения величины угла.
  • Нанесение размеров ГОСТ 2.307–68 (в ред. 2004 г.) устанавливает правила нанесения размеров и предельных отклонений на чертежах и других технических документах на изделия всех отраслей промышленности и строительства. Правила и рекомендации при простановке размеров
  • Если изображение объекта выполнено с разрывом, то размерную линию не прерывают
  • Размеры радиусов наружных и внутренних скруглений наносят над размерной линией или на полке–выноске самой размерной линии. При этом следует избегать совпадения направления размерной линии радиуса с направлением штриховки. Вариант написания размерных чисел при различных положениях размерных линий следует выбирать, исходя из удобства их прочтения на чертеже
  • Предмет и метод начертательной геометрии Начертательная геометрия – теоретическая база для составления чертежей.
  • Инвариантные свойства параллельного проецирования Прямоугольное (ортогональное) проецирование
  • Положение предмета в пространстве определяют четыре его точки, не лежащие в одной плоскости. Изображение пространственного предмета на чертеже сводится к построению проекций множества точек этого предмета на плоскости R (называемой плоскостью проекций) при помощи прямых линий (проецирующих лучей), проходящих через точки предмета и направленных к центру проецирования S.
  • Аксонометрическая проекция – один из способов изображения пространственных фигур на плоскости. Этот вид проекций обладает большой наглядностью и является обратимым изображением. Слово “аксонометрия” в переводе с греческого означает ерение по осям”.
  • Стандартные аксонометрические проекции Из многообразия возможных видов аксонометрических проекций ГОСТ 2.317-(СТ СЭВ 1979-79) рекомендует для применения в чертежах всех отраслей промышленности и строительства ограниченное количество таких, которые меньше искажают изображение геометрических фигур и наиболее удобны при построении.
  • Комплексный чертеж точки Внутри трехгранного угла, образованного горизонтальной (H), фронтальной (V) и профильной (W) плоскостями проекций, расположим какую-либо точку А
  • Проекции прямых уровня Прямыми уровня называются прямые, параллельные плоскостям проекций. Их основное свойство: отрезки, принадлежащие прямым уровня, на одной из плоскостей проекций (параллельной им) изображаются в натуральную величину, а на второй плоскости проекций изображаются отрезками, параллельными осям.
  • Проекции проецирующих прямых Проецирующей называется прямая, перпендикулярная к плоскости проекций.
  • Параллельные прямые Если провести через данные параллельные прямые АВ и СD плоскости, перпендикулярные горизонтальной плоскости проекций, то эти две плоскости будут параллельны, и в их пересечении с плоскостью H будут получены две взаимно параллельные прямые A'B' и C'D', являющиеся ортогональными проекциями данных прямых АВ и CD на горизонтальную плоскость проекций
  • Профильная плоскость параллельна профильной плоскости проекций. На двухкартинном комплексном чертеже она изображается двумя следами: горизонтальным и фронтальным, перпендикулярными оси x.
  • Взаимное расположение двух плоскостей Две плоскости могут быть параллельными или пересекаться между собой.
  • Взаимное расположение прямой и плоскости
  • Условие видимости на чертеже Для большей наглядности невидимые части предмета вычерчивают штриховыми линиями (либо совсем не вычерчивают).
  • Главные линии плоскости Кроме прямых линий общего положения, в плоскости отмечают три главные линии: горизонтальную (горизонталь), фронтальную (фронталь) и линию наибольшего наклона. Эти линии применяют как вспомогательные: они упрощают решение задач. Две из них – горизонтальная и фронтальная – уже рассматривались.
  • Перпендикулярные плоскости Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Построение таких плоскостей может быть выполнено двумя путями:
  • Построение теней Основы теории теней Нанесением теней пользуются для придания проекционным чертежам большей наглядности. Особенно широко используются тени при оформлении архитектурных проектов, а также для решения ряда практических задач (например, для выявления освещенности наружных или внутренних частей сооружения при определенных условиях, для определения размеров сооружения по отбрасываемой им тени и т.п.).
  • Падающая тень от прямой линии Тень, падающая от прямой линии, состоит из падающих теней от всех ее точек. Лучи, проходящие через все точки прямой, образуют лучевую плоскость, а тень от прямой линии есть линия пересечения лучевой плоскости с плоскостью или поверхностью, на которую падает тень (то есть след лучевой плоскости).
  • Тень от плоской фигуры (непрозрачной пластинки) Чтобы построить падающую тень от плоской фигуры, ограниченной многоугольником, достаточно построить тени, падающие от всех сторон многоугольника.
  • Тень, падающая от одной фигуры на другую Метод обратных лучей
  • Метод следа светового луча (метод сечения лучевой плоскостью) Метод следа луча основан на том, что тень, падающая от точки, есть след проведенного через нее луча.
  • Тени цилиндра Чтобы построить контур собственной тени цилиндрической поверхности, необходимо провести к этой поверхности касательные лучевые плоскости, параллельные направлению лучей света, и найти линии касания (образующие цилиндра). Вдоль этих образующих пройдет контур собственной тени.
  • Тени пересекающихся многогранников (от здания) Выше говорилось, что тени делятся на собственные и падающие. Определение собственной тени сводится к нахождению ее контуров, то есть линий, отделяющих освещенную часть поверхности от неосвещенной.
  • Тени конуса
  • Тени на фасадах зданий Построение теней в нишах Тени от выступов
  • Методы преобразования комплексного черчежа В рассмотренных задачах определялось взаимное расположение в пространстве геометрических фигур. Такие задачи называют позиционными.
  • Способ вращения Сущность способа вращения также состоит в изменении положения объекта, заданного на комплексном чертеже (эпюре), таким образом, чтобы определенные его элементы заняли относительно плоскостей проекций частное положение и проецировались без искажения.
  • Линии и поверхности Линия – это множество всех последовательных положений движущейся точки.
  • В технической практике принято рассматривать образование поверхности (как и линии) с позиций кинематики – движения. Поверхность – это множество последовательных положений движущейся линии – образующей.
  • Поверхности линейчатые неразвертывающиеся Наиболее распространены в этой разновидности поверхностей поверхности Каталана или поверхности с двумя направляющими и плоскостью параллелизма. Образующие параллельны этой плоскости.
  • Поверхности нелинейчатые Различают нелинейчатые поверхности с образующей переменного вида и с образующей постоянного вида.
  • Поверхности параллельного переноса Поверхностью параллельного переноса называется поверхность, образованная параллельным переносом образующей линии.
  • Поверхности винтовые Винтовая поверхность получается винтовым перемещением образующей. Как известно, винтовое перемещение характеризуется вращением вокруг оси и одновременно поступательным движением, параллельным этой оси.
  • Пересечение плоскости с поверхностью многогранника Линией пересечения поверхности многогранника плоскостью является плоский многоугольник. Его вершины являются точками пересечения ребер с заданной плоскостью, а стороны – линиями пересечения граней с секущей плоскостью.
  • Конические сечения Коническими сечениями называются линии, которые получаются при пересечении поверхности конуса второго порядка с плоскостью. К числу этих линий относятся следующие: окружность, двойная прямая, две пересекающиеся прямые, эллипс, парабола, гипербола. Простейшим коническим сечением является точка.
  • Пересечение прямой линии с поверхностью Общие положения При пересечении прямой линии с поверхностью может получиться одна или несколько точек встречи, которые называются точками входа и выхода.
  • Взаимное пересечение поверхностей В пересечении поверхностей получаются плоские или пространственные линии, которые рассматриваются как множество точек, принадлежащих одновременно обеим поверхностям. Обычно линию пересечения двух поверхностей строят по ее отдельным точкам.
  • Способ секущих плоскостей Рассмотрим частный случай – способ вспомогательных ПРОЕЦИРУЮЩИХ плоскостей. Он заключается в следующем: вводится ряд плоскостей частного положения (уровня или проецирующих), пересекающих данные поверхности по графически простым линиям (прямым или окружностям). Пересечение этих линий между собой дает точки, которые будут общими для каждой из данных поверхностей и, следовательно, будут принадлежать искомой линии пересечения.
  • Пересечение поверхностей Способ концентрических сфер Этот способ применяется в случае, когда оси двух поверхностей вращения пересекаются под некоторым углом и находятся в плоскости, параллельной какой-либо плоскости проекций (особенно в том случае, когда на чертеже дана только одна проекция деталей).
  • Особые случаи пересечения. Теорема Монжа
  • Разверка поверхностей Под развертыванием следует понимать совмещение всей поверхности тела с плоскостью.
  • Пример. Построить развертку боковой поверхности эллиптического конуса с круговым основанием
  • Способ раскатки рекомендуется для построения развертки цилиндрической поверхности, когда ее образующие являются прямыми уровня, то есть параллельными одной из плоскостей проекций.
  • Способ конусов. Этот способ состоим в замене неразвертывающихся поверхностей такой другой поверхностью, которая составлена из нескольких конических и, следовательно, развертываемых элементов.
  • Методические указания к выполнению лабораторных работ по электронике

  • Методические указания к выполнению лабораторных работ по исследованию полупроводниковых диодов Электроника – это область науки, техники и производства, охватывающая исследования и разработку электронных приборов и принципов их использования. Отличие экспериментальной обратной ветви ВАХ диода от теоретической обусловлено наличием в реальном диоде не только диффузионного тока экстракции, но и дрейфового тока термогенерации, а также возможностью пробоя p-n-перехода. Ток термогенерации протекает вследствие выброса полем p-n-перехода подвижных носителей заряда, появляющихся в p-n-переходе в результате термогенерации.
  • Схемы исследования прямой и обратной ветви вольт – амперной характеристики выпрямительного диода
  • Основы оптики Лабораторные работы
  • Вольт – амперные характеристики исследуемых диодов следует строить как зависимость тока, протекающего через диод, от напряжения, приложенного к диоду. Прямую и обратную ветвь ВАХ следует строить на одном графике в I и III квадрантах соответственно, используя при этом разные масштабы.
  • Исследование полупроводникового стабилизатора, стабилитрона и тунельного диода Цель работы: изучение свойств полупроводникового стабистора, стабилитрона и туннельного диода, исследование их вольт – амперных характеристик и определение основных параметров
  • ВАХ туннельного диода имеет на прямой ветви падающий участок. Сложность измерения такой характеристики связана с определенными экспериментальными трудностями, вызванными необходимостью обеспечения устойчивости схемы, содержащей элемент с отрицательным дифференциальным сопротивлением.
  • Методические указания к выполнению лабораторных работ по исследованию полевых и биполярных транзисторов В основе развития электроники лежит непрерывное усложнение функций, выполняемых электронной аппаратурой. В связи с этим, знание основных свойств полупроводниковых приборов, ознакомление с их конструкцией и элементами технологии изготовления, а также методикой измерения параметров, является основополагающим для грамотного проектирования радиоэлектронных схем.
  • Исследование полевых транзисторов Цель работы: изучение принципов действия, измерение характеристик и определение основных параметров полевого транзистора с управляющим p-n-переходом и полевого транзистора с изолированным затвором
  • Расчет режима симметричной трехфазной нагрузки при несимметричном напряжении Курсовая работа по ТОЭ
  • К дифференциальным параметрам полевых транзисторов относятся: проводимость прямой передачи, или крутизна характеристики управления
  • Исследование биполярных транзисторов Цель работы: изучение принципа действия, исследование статических характеристик и определение дифференциальных параметров биполярных транзисторов, включенных по схемам: общая база (ОБ) и общий эмиттер (ОЭ)
  • В активном режиме эмиттерный p-n-переход находится в прямом включении, а коллекторный – в обратном. Включение биполярного транзистора с общей базой в активном режиме показано на рис. 2.5. Активный режим обеспечивается соответствующей полярностью напряжений, подключенных к эмиттеру (UЭБ) и коллектору (UКБ) и отсчитываемых относительно базы.
  • Вид характеристик зависит от способа включения транзистора. Для однозначного установления зависимости между токами и напряжениями транзистора достаточно иметь два семейства характеристик. На практике наибольшее применение получили входные и выходные характеристики. Характеристики прямой передачи и обратной связи применяются редко и могут быть легко получены из входных и выходных характеристик путем перестроения.
  • Схема исследования статических характеристик биполярного транзистора типа n-p-n, включенного по схеме «ОБ»
  • Полупроводниковые выпрямители Цель работы 1. Ознакомиться со схемами и принципами действия однофазных однополупериодных и двухполупериодных выпрямителей. 2. Снять характеристики мостового двухполупериодного выпрямителя без фильтра и с использованием фильтров различного типа.
  • Электронный усилитель на транзисторах Цель работы Освоить основные понятия о структуре, характеристиках, режимах работы электронных усилителей. Снять амплитудную и амплитудно-частотную характеристику двухкаскадного усилителя.
  • Управляемые тиристорные выпрямители Цель работы 1. Ознакомиться со схемой и принципом действия однофазного регулируемого тиристорного выпрямителя. 2. Снять характеристики выпрямителя для различных режимов работы.
  • Лабораторная работа «Фотоэлектрические преобразователи - Фотодатчики» Фотопреобразователем (фотодатчиком, фотоэлементом) называется электронный прибор, который преобразует энергию фотонов в электрическую энергию. Фотодатчики могу регистрировать и преобразовывать как видимое излучение, так и невидимое (инфракрасное, ультрафиолетовое).
  • Операционный инвертирующий усилитель Цель работы Освоить основные понятия об операционных усилителях, характеристиках, режимах работы усилителей. Снять амплитудную и амплитудно-частотную характеристику усилителя.
  • Зонная структура полупроводнков Сближение атомов в твердом теле на расстояние порядка размеров самих атомов приводит к тому, что внешние (валентные) электроны теряют связь с определённым атомом — они движутся по всему объему кристалла, вследствие чего дискретные атомные уровни энергии расширяются в полосы (энергетические зоны).
  • Примеси в полупроводниках. p- и n-типы полупроводников Электропроводность полупроводника может быть обусловлена как электронами собственных атомов данного вещества (собственная проводимость), так и электронами примесных атомов (примесная проводимость). Наряду с примесями источниками носителей тока могут быть и различные дефекты структуры, например вакансии, междоузельные атомы, а также недостаток или избыток атомов одного из компонентов в полупроводниковых соединениях (отклонения от стехиометрического состава), например недостаток Ni в NiO или S в PbS.
  • Токи в полупроводниках Движение носителей заряда в полупроводнике обусловлено двумя механизмами – дрейфовым и диффузионным. Электрическое поле, в которое помещен полупроводник, вызывает направленное движение носителей - дрейф. Причиной же диффузии носителей заряда является наличие градиента концентрации свободных носителей.
  • Типы фотодатчиков Все фотодатчики по принципу действия можно разделите на две большие группы: тепловые и фотонные.
  • Исследование влияния пространственного заряда на прохождение тока в диоде
  • Изучение вращения плоскости поляризации в магнитном поле (эффект Фарадея). Ознакомление с теорией эффекта Фарадея; наблюдение вращения плоскости поляризации при прохождении света через вещество, помещенное в магнитное поле.
  • Исследование полупроводниковых выпрямителей и сглаживающих фильтров В лабораторной работе изложена теория и исследуются схемы полупериодного и двухполупериодного выпрямления однофазного переменного тока и двухполупериодного выпрямления трехфазного переменного тока без фильтра и с набором различных сглаживающих фильтров. По результатам экспериментов рассчитываются коэффициенты пульсаций, сглаживания и снимаются внешние характеристики различных выпрямителей.
  • Исследование метрологических характеристик тензорезисторных преобразователей усилия
  • Основные характеристики тензорезисторов К основным технико-метрологическим характеристикам тензорезисторов относятся тензочувствительность, ползучесть, механический гистерезис, температурная нестабильность и группа динамических характеристик. Тензочувствительность определяется главным образом тензорезистивными свойствами материала чувствительного элемента, однако в значительной степени зависит от конструкции преобразователя, материала основы, вида и условий полимеризации клея и других факторов. Тензочувствительность тензорезистора, как и самого тензорезистивного материала, определяется коэффициентом относительной тензочувствительности K (15).
  • По выполнению лабораторной работы по дисциплине первичные измерительные преобразователи Цель работы Ознакомится с принципом дествия индуктивных и трансформаторных датчиков, датчиков перемещения и схемами их включения в измерительные электрические цепи. Экспериментальным путем оптимизировать частоту напряжения питания измерительной схемы индуктивного и трансформаторного преобразователей по критерию максимальной чувствительности.
  • Оборудование, используемое при выполнении лабораторной работы Объект исследования Объектом исследования является дифференциальный индуктивный датчик линейных перемещений, имеющий два цилиндрических каркаса, на каждом из которых намотаны по две обмотки на каркасе I -обмотки W1 и W3, на каркасе 2 - обмотки W2 и W4
  • Методика проведения исследований и обработки результатов эксперимента. Основная цель проведения лабораторной работы – оптимизировать частоту напряжения питания измерительной схемы индуктивного преобразователя с целью получения максимальной чувствительности.
  • Измерение усилий и деформаций с использованием тензорезисторных преобразователей Целью настоящей работа является изучение принципа действия тензорезисторных преобразователей и приобретение практических навыков работы с тензометрической установкой, предназначенной для измерения механических сил и деформаций. В процессе выполнения работы студенты собирают электрическую схему тензометрической установки, определяют ее градуировочную характеристику, а затем определяют неизвестные веса и массы деталей.
  • Обычно в практике измерений аппроксимирующую прямую принимают за градуировочную характеристику. В этом случае вместо градусника можно использовать известное значение чувствительности S, оговаривая при этом верхний предел измерения по усилию Pmax.
  • Исследование полупроводниковых выпрямительных диодов Цель работы - ознакомление с основными параметрами и характеристиками полупроводниковых выпрямительных диодов.
  • Расчетная часть Рассчитать вольт-амперную характеристику (ВАХ) выпрямительного диода I=f(U) при температуре окружающей среды +200С и +400С в диапазоне U=0…300мВ (не менее 5 точек).
  • Исследование стабилитронов Цель работы - ознакомление с основными параметрами и характеристиками полупроводниковых стабилитронов.
  • Исследование варикапов Цель работы - ознакомление с основными параметрами и характеристиками варикапов.