Механика
Сопромат
Физика
Информатика
Задачи
ТОЭ
Ядерная физика
История искусства
Тех мех
Математика
Типовой
Технологии
Задачи
Лабораторные
Начертательная
Карта


Искусственные нейронные сети.

ОДНОСЛОВНЫЕ  ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

  Рис. 1.5. Однослойная нейронная сеть.

 Хотя один нейрон и способен выполнять  простейшие процедуры распознавания, сила нейронных вычислений проистекает от соединений  нейронов в сетях. Простейшая сеть состоит из группы нейронов, образующих слой, как показано в правой части рис. 1.5. Отметим, что вершины-круги слева служат  лишь для распределения входных сигналов. Они не выполняют каких- либо вычислений, и поэтому не будут считаться слоем. По этой причине они обозначены кругами, чтобы  отличать их от вычисляющих нейронов, обозначенных квадратами. Каждый элемент из множества входов Х отдельным весом соединен с каждым искусственным нейроном. А каждый нейрон выдает взвешенную сумму входов в сеть. В искусственных и биологических  сетях многие соединения могут отсутствовать, все соединения показаны в целях общности. Могут иметь место также соединения между выходами и входами элементов в слое. Такие конфигурации рассматриваются в гл. 6. Удобно считать веса элементами матрицы  W. Матрица имеет т строк и п столбцов, где т. - число входов, а п - число нейронов. Например, w3,2 - это вес, связывающий третий вход со вторым нейроном. Таким образом, вычисление выходного вектора N, компонентами которого являются выходы OUT нейронов, сводится к матричному умножению N = XW, где N и Х- векторы-строки.

МНОГОСЛОЙНЫЕ  ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ.

 Более крупные и сложные нейронные сети обладают, как правило, и большими вычислительными возможностями. Хотя созданы сети всех конфигураций, какие только можно себе представить, послойная организация нейронов копирует слоистые структуры определенных отделов мозга. Оказалось, что такие многослойные сети обладают большими возможностями, чем однослойные, и в последние годы были  разработаны алгоритмы для их обучения. Многослойные сети могут образовываться каскадами слоев. Выход одного слоя является входом для последующего слоя. Подобная сеть показана на рис. 1.6 и снова изображена со всеми соединениями.

Нелинейная активационная функция

 Многослойные сети могут привести к увеличению вычислительной  мощности по сравнению с однослойной сетью лишь в том случае, если активационная  функция между слоями будет нелинейной. Вычисление выхода слоя заключается в умножении  входного вектора на первую весовую матрицу с последующим умножением (если отсутствует нелинейная активационная функция) результирующего вектора на вторую весовую матрицу.

  Так как умножение матриц ассоциативно, то X(W1, W2). Это показывает, что двухслойная  линейная сеть эквивалентна одному слою с весовой матрицей, равной произведению  двух весовых матриц. Следовательно, любая многослойная линейная сеть может быть заменена эквивалентной однослойной сетью. Таким образом, для расширения возможностей сетей по сравнению с однослойной сетью необходима нелинейная однослойная функция

Примеры применения нейронных сетей для решения экономических задач.

На рынке коммерческих программных продуктов наряду с аналитическими инструментами нового поколения, основанными на применении логики нечетких множеств — от электронных таблиц (Fuzzy Calc) до экспертных систем (Cubi Calc) корпорации Hyper Jodic (США), все больший интерес для финансово-экономической деятельности представляют аналитические информационные технологии, основанные на использовании нейронных сетей. Нейронные сети — обобщенное название групп алгоритмов, которые умеют обучаться на примерах, извлекая скрытые закономерности из потока данных. Компьютерные технологии, получившие название нейросетевых, работают по аналогии с принципами строения и функционирования нейронов головного мозга человека и позволяют решать чрезвычайно широкий круг задач: распознавание человеческой речи и абстрактных образов, классификацию состояний сложных систем, управление технологическими процессами и финансовыми потоками, решение аналитических, исследовательских, прогнозных задач, связанных с обширными информационными потоками. Являясь мощным технологическим инструментом, нейросетевые технологии облегчают специалисту процесс принятия важных и неочевидных решений в условиях неопределенности, дефицита времени и ограниченных информационных ресурсов.

С середины 1980-х годов нейронные сети начали использоваться на Западе преимущественно в финансовых и военных приложениях. Однако, несмотря на успех, инструмент оказался слишком сложным и дорогостоящим.

Ситуация изменилась в начале 1990-х годов, когда на рынке появилось новое поколение нейросетевых технологий — мощных, недорогих, простых в использовании. Одним из лидеров рынка стал нейросетевой пакет Brain Maker американской фирмы California Scientific Software.

Разработанный но заказу военных пакет был адаптирован для бизнес-приложений и с 1990 года удерживает лидерство среди самых продаваемых нейросетевых пакетов США.

Свой путь на российский рынок нейронные сети начали с финансово-кредитной сферы, где заинтересованные в совершенствовании аналитической работы банки стали интенсивно включать нейронные сетевые технологии в состав финансовых приложений. В настоящее время пользователями Brain Marker Pro 3.12 (последней профессиональной версии пакета) стали уже более 200 банков и торговых компаний, а последнее время — и аналитические учреждения верхних эшелонов власти.

Возможны и некоторые обобщения. Например, ТК на базе ВК или ВС, в составе которой встречаются в се перечисленные ранее отдельные системы. С другой стороны, заслуживает внимания и детальное рассмотрение некоторых классов вычислительных систем. Тогда классификация продолжается "вглубь" каждого из классов. Так вычислительные комплексы разделяют на многопроцессорные (МПВК) и многомашинные (ММВК), а вычислительные сети в самом общем случае делят на глобальные (ГВС) и локальные (ЛВС).
Средства управления безопасностью сетей