Механика
Сопромат
Физика
Информатика
Задачи
ТОЭ
Ядерная физика
История искусства
Тех мех
Математика
Типовой
Технологии
Задачи
Лабораторные
Начертательная
Карта
Прочее про деньги, как студенту как откосить от армии.

Примеры выполнения заданий контрольной работы по начертательной геометрии

ПЛОСКОСТИ, КАСАТЕЛЬНЫЕ К ПОВЕРХНОСТЯМ. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ.

Пересечение многогранников

 

Если через произвольную точку М кривой поверхности Б (рисунок 10-1) провести произвольные линии α,b и c, принадлежащие этой поверхности, а затем к этим кривым в точке М построить касательные прямые tα, tb и tc, то все касательные прямые будут лежать в одной плоскости Е, называемой касательной плоскостью к поверхности.

Следовательно, касательная плоскость является геометрическим местом всех касательных, проведенных к данной кривой поверхности и проходящих через одну ее точку.

Для построения касательной плоскости к поверхности в ее точке М достаточно через эту точку провести на поверхности только две кривые линии α и b, и к ним построить касательные прямые tα и tb (рисунок 10-2).

  Две эти касательные прямые и определяют касательную плоскость Е. Вполне естественно, что в качестве таких кривых линий поверхности выбирают ее графически простые линии. Например, для линейчатых поверхностей одной из этих кривых может служить ее прямолинейная образующая, (она будет совпадать со своей касательной), а для поверхности вращения – ее параллель (окружность). В зависимости от вида поверхности касательная плоскость может касаться ее в одной точке (рисунок 10-1 – сфера), по прямой линии (рисунок 10-2а – конус), по кривой линии (рисунок 10-2б – тор).

В приведенных примерах поверхность располагается по одну сторону от касательной плоскости и не пересекается последней. Однако касательная плоскость может и пересекать поверхность. Так, плоскость Е, касательная к однополостному гиперболоиду, пересекает его по двум образующим α и b, которые при этом являются и касательными tα и tb, определяющими касательную плоскость Е (рисунок 10-3).

Рассмотрим примеры построения касательной плоскости к различным поверхностям.

Пример 1. Построить плоскость Е, касательную к поверхности вращения в ее точке М (рисунок 10-4).

В качестве двух кривых линий поверхности, касательные к которым определят искомую плоскость Е, выберем параллель h и меридиан α, проходящие через точку М.

Параллель h является окружностью, расположенной горизонтально, и построение касательной th к ней не составляет труда. Для построения касательной tα к меридиану α предварительно преобразуем чертеж, повернув меридиан вокруг оси поверхности вращения до фронтального положения α1. При этом точка М займет положение М1. Теперь построим касательную tα к фронтальному меридиану α1 в его точке М1 и, произведя обратное вращение, получим искомую касательную к меридиану α.

Касательная к поверхности вращения плоскость Е определяется двумя пересекающимися прямыми th и tα.

Пример 2. Построить плоскость Е, касательную к поверхности конуса в его точке М (рисунок 10-5).

< Так как конус – поверхность линейчатая, то, проведя через точку М образующую t (являющуюся в то же время и касательной), получим одну из прямых, определяющих искомую плоскость Е. Второй прямой будет касательная th к окружности на поверхности конуса h в ее точке М.

Отметим, что касательная th параллельна касательной t1, проведенной в точке N к окружности основания конуса. Поэтому искомую касательную плоскость Е можно задать образующей t и касательной t1, не строя вспомогательной окружности h, проходящей через точку М.

Пример 3. Построить касательную к цилиндрической поверхности плоскость Е, проходящую через точку А, расположенную вне поверхности цилиндра (рисунок 10-6).

Поскольку искомая касательная плоскость должна содержать в себе образующую цилиндрической поверхности, то в качестве первой прямой, определяющей касательную плоскость, можно провести через данную точку А прямую α параллельную образующей цилиндра.

Если теперь провести через точку В (точку пересечения прямой α с плоскостью Г) касательные к окружности основания цилиндра прямые t1 и t2, то прямая α и касательные t1 и t2 определят две касательные плоскости Е(αхt1) и К(αхt2). Эти плоскости касаются поверхности цилиндра с разных сторон по его образующим т1 и т2.

Пересечение плоскости и поверхности, определение натуры сечения Плоские сечения многогранных и кривых поверхностей представляют собой замкнутые фигуры.

Линия пересечения двух поверхностей, называемая линией перехода, это такая линия, все точки которой одновременно принадлежат обеим поверхностям. В общем случае она представляет собой пространственную кривую или ломаную линию (при пересечении многогранных поверхностей), которая может распадаться на две или более частей. В отдельных случаях эти части могут быть плоскими кривыми или многоугольниками.

Пример. Построить линию пересечения полуцилиндра конусом вращения. На виде спереди линия пересечения уже имеется - она совпадает с вырожденным видом полуцилиндра и находится в пределах площади наложения обеих поверхностей.

Способ концентрических сфер Предварительно скажем несколько слов о пересечении соосных поверхностей, т.е. поверхностей, имеющих общую ось вращения.


На главную