Лекции по сопромату, теория, практика, задачи Моменты инерции сложных фигур Деформации и перемещения при кручении валов Определение опорных реакций Понятие об устойчивости

Определение опорных реакций.

Рассмотрим несколько примеров.

Пример 3.1. Определить опорные реакции консольной балки (рис. 3.3).

Решение. Реакцию заделки представляем в виде двух сил Az и Ay, направленных, как указано на чертеже, и реактивного момента MA.

Составляем уравнение равновесия балки.

1. Приравняем нулю сумму проекций на ось z всех сил, действующих на балку. Получаем Az = 0. При отсутствии горизонтальной нагрузки горизонтальная составляющая реакции равна нулю.

2. То же, на ось y: сумма сил равна нулю. Равномерно распределенную нагрузку q заменяем равнодействующей qaз, приложенной посредине участка aз:

Ay - F1 - qaз = 0,

откуда

Ay = F1 + qaз.

Вертикальная составляющая реакции в консольной балке равна сумме сил, приложенных к балке.

3. Составляем третье уравнение равновесия. Приравняем нулю сумму моментов всех сил относительно какой-нибудь точки, например относительно точки А:

mg/t3_1.gif

откуда

mg/t3_2.gif

mg/3_3.gif

Знак минус показывает, что принятое вначале направление реактивного момента следует изменить на обратное. Итак, реактивный момент в заделке равен сумме моментов внешних сил относительно заделки.

Пример 3.2. Определить опорные реакции двухопорной балки (рис. 3.4). Такие балки обычно называют простыми.

Решение. Так как горизонтальная нагрузка отсутствует, то Az = 0
mg/t3_3.gif
mg/3_5.gif

Вместо второго уравнения можно было использовать условие того, что сумма сил по оси Y равна нулю, которое ы данном случае следует применить для проверки решения:
25 - 40 - 40 + 55 = 0, т.е. тождество.

Пример 3.3. Определить реакции опор балки ломаного очертания (рис. 3.5).

Решение.
mg/t3_4.gif
т.е. реакция Ay направлена не вверх, а вниз. Для проверки правильности решения можно использовать, например, условие того, что сумма моментов относительно точки В равна нулю.


3.4. Правило знаков для изгибающих моментов и поперечных сил.

Поперечная сила в сечении балки mn (рис. 3.7, а) считается положительной, если равнодействующая внешних сил слева от сечения направлена снизу вверх, а справа - сверху вниз, и отрицательной - в противоположном случае (рис. 3.7, б).

mg/3_7.gif

Изгибающий момент в сечении балки, например в сечении mn (рис. 3.8, а), считается положительным, если равнодействующий момент внешних сил слева от сечения направлен по часовой стрелке, а справа - против часовой стрелки, и отрицательным в противоположном случае (рис. 3.8, б). Моменты, изображенные на рис. 3.8, а, изгибают балку выпуклостью вниз, а моменты, изображенные на рис. 3.8, б, изгибают балку выпуклостью вверх. Это можно легко проверить, изгибая тонкую линейку.

mg/3_8.gif

Отсюда следует другое, более удобное для запоминания правило знаков для изгибающего момента. Изгибающий момент считается положительным, если в рассматриваемом сечении балка изгибается выпуклостью вниз. Далее будет показано, что волокна балки, расположенные в вогнутой части, испытывают сжатие, а в выпуклой - растяжение. Таким образом, условливаясь откладывать положительные ординаты эпюры М вверх от оси, мы получаем, что эпюра оказывается построенной со стороны сжатых волокон балки.

Приведенные темы лабораторных работ из-за ограниченного объёма учебных часов, не претендуют на охват всего многообразия задач сопротивления материалов, а включают лишь основные работы. Существуют и другие методы экспериментального исследования моделей, деталей машин и элементов конструкций (голографический, фотоупругости, хрупких покрытий, муаровых полос, рентгеновский и др.), которые применяют в зависимости от объекта исследования, наличия оборудования и др. Описание лабораторных работ, основанных на применении этих методов, можно найти в работах [2, 5, 7], приведенных в списке использованной литературы.
Внутренние силы. Метод сечения