Лекции по черчению, начертательной геометрии

Курс лекций по строительной механике
Задачи по строительной механике
Лабораторные работы по электронике
Лекции по сопромату, теория, практика,
задачи
Деформации и перемещения при
кручении валов
Определение опорных реакций
Внутренние силы. Метод сечения
Курс высшей математики
Дифференциальное исчесление
Основные правила дифференцирования
Дифференциал функции
Производные и дифференциалы
высших порядков
Решение типовых задач
Типовой расчет по высшей математике
Образец выполнения типового расчёта
Интегрирование
Производная и дифференциал
функции двух переменных
Задачи приводящие к понятию
определенного интеграла
Курс лекций по физике
Анализ колебаний в нелинейных цепях
Линейные параметрические цепи
Начертательная геометрия
Компьютерные информационные технологии
Корпоративные информационные системы
Корпоративные сети
Администрирование компьютерных сетей.
Средства управления безопасностью сетей
Курс лекций по истории искусства
Культура ранних цивилизаций
Культура Древнего Египта
Культура Древней Индии
Корпоративные информационные системы
Основная идея технологии "клиент-сервер"
Сетевое обеспечение корпоративных
информационных систем
Корпоративные базы данных
Энергосберегающие технологии
Системы теплоснабжения
Развитие нетрадиционной энергетики
Ветроэнергетика в России
Солнечная энергетика в России
Гелиоэнергетика.
Геотермальная энергия
Мини-теплоэлектростанция на отходах
Использование водной энергии земли
Лекции по электротехнике
Линейные цепи постоянного тока
Источник ЭДС и источник тока
Электрические цепи с взаимной
индуктивностью
Магнитное поле и магнитные цепи
Электрические машины переменного тока
Энергетический баланс асинхронного
двигателя
Однофазный асинхронный двигатель
Лекции по электронике
Биполярные транзисторы
Электронные усилители и генераторы
Источники питания электронных устройств
Трехфазные выпрямители
Цифровой измерительный прибор
Измерение тока и напряжения
Гальванические преобразователи
 

Введение в черчение Рисунок и чертеж сопровождают нас всю жизнь, помогая разобраться в самых разнообразных вопросах науки, техники и искусства. В давние времена у человека появилась необходимость изобразить то, что он видел, а позже то, что ему нужно было сделать. Древние графические изображения – это пещерная живопись, рисунки на камнях, папирусы, стенная живопись – постепенно совершенствовалась, складывались и обобщались правила их построения.

Линии Чтобы чертеж был выразительным и легко читался, он должен быть оформлен линиями различной толщины и формы. Линии чертежа должны иметь начертание в соответствии с их назначением по ГОСТ 2.303-68.

Русский алфавит (кириллица)

Чертежи сопровождаются основной надписью по ГОСТ 2.104-2006, которую располагают в его правом нижнем углу. Порядок выполнения основной надписи

Сопряжения Очертания многих предметов представляют собой сочетание ряда: линий, в большинстве своем плавно переходящих одна в другую. Примером плавных переходов могут служить контуры различных видов художественных изделий, посуды, рисунки орнаментов и т.п.

Построение касательных к двум окружностям При вычерчивании контуров предметов сравнительно часто приходится строить общие касательные к двум дугам окружностей. Общая касательная к двум окружностям может быть внешней, если обе окружности расположены с одной стороны от нее, и внутренней, если окружности расположены с разных сторон касательной.

Вычерчивание контуров деталей Последовательность вычерчивания контуров деталей, в основном, зависит от их формы. Поэтому можно указать только на некоторые общие положения, справедливые для всех случаев.

Плоские кривые Кривые, у которых все точки расположены в одной плоскости, называют плоскими. Часть плоских кривых, состоящих из дуг окружностей, образует группу циркульных кривых. Дуги циркульных кривых касаются друг друга, поэтому построение их основано на правилах сопряжения и выполняется при помощи циркуля.

Лекальные кривые – это такие кривые, которые могут быть вычерчены только с помощью лекала по предварительно построенным точкам. Лекальные кривые широко применяются в очертаниях различных деталей и предметов. Это могут быть профили зубчатых колес и кулачков, очертания кронштейнов, подвесок, посуды и мебели. Лекальные кривые могут быть также получены в результате сечения цилиндра, конуса и других тел вращения плоскостью.

Гипербола. Если рассечь прямой и обратный конусы плоскостью, параллельной двум его образующим или в частном случае параллельной оси, то в плоскости сечения получится гипербола, состоящая из двух симметричных ветвей

Синусоида. Синусоидой называется проекция траектории точки, движущейся по цилиндрической винтовой линии, на плоскость, параллельную оси цилиндра. Движение точки складывается из равномерно–вращательного движения (вокруг оси цилиндра) и равномерно–поступательного (параллельно оси цилиндра). Синусоида – это плоская кривая, которая показывает изменение тригонометрической функции синуса в зависимости от изменения величины угла.

Нанесение размеров ГОСТ 2.307–68 (в ред. 2004 г.) устанавливает правила нанесения размеров и предельных отклонений на чертежах и других технических документах на изделия всех отраслей промышленности и строительства. Правила и рекомендации при простановке размеров

Если изображение объекта выполнено с разрывом, то размерную линию не прерывают

Размеры радиусов наружных и внутренних скруглений наносят над размерной линией или на полке–выноске самой размерной линии. При этом следует избегать совпадения направления размерной линии радиуса с направлением штриховки. Вариант написания размерных чисел при различных положениях размерных линий следует выбирать, исходя из удобства их прочтения на чертеже

Предмет и метод начертательной геометрии Начертательная геометрия – теоретическая база для составления чертежей.

Инвариантные свойства параллельного проецирования Прямоугольное (ортогональное) проецирование

Положение предмета в пространстве определяют четыре его точки, не лежащие в одной плоскости. Изображение пространственного предмета на чертеже сводится к построению проекций множества точек этого предмета на плоскости R (называемой плоскостью проекций) при помощи прямых линий (проецирующих лучей), проходящих через точки предмета и направленных к центру проецирования S.

Аксонометрическая проекция – один из способов изображения пространственных фигур на плоскости. Этот вид проекций обладает большой наглядностью и является обратимым изображением. Слово “аксонометрия” в переводе с греческого означает ерение по осям”.

Стандартные аксонометрические проекции Из многообразия возможных видов аксонометрических проекций ГОСТ 2.317-(СТ СЭВ 1979-79) рекомендует для применения в чертежах всех отраслей промышленности и строительства ограниченное количество таких, которые меньше искажают изображение геометрических фигур и наиболее удобны при построении.

Комплексный чертеж точки Внутри трехгранного угла, образованного горизонтальной (H), фронтальной (V) и профильной (W) плоскостями проекций, расположим какую-либо точку А

Проекции прямых уровня Прямыми уровня называются прямые, параллельные плоскостям проекций. Их основное свойство: отрезки, принадлежащие прямым уровня, на одной из плоскостей проекций (параллельной им) изображаются в натуральную величину, а на второй плоскости проекций изображаются отрезками, параллельными осям.

Проекции проецирующих прямых Проецирующей называется прямая, перпендикулярная к плоскости проекций.

Параллельные прямые Если провести через данные параллельные прямые АВ и СD плоскости, перпендикулярные горизонтальной плоскости проекций, то эти две плоскости будут параллельны, и в их пересечении с плоскостью H будут получены две взаимно параллельные прямые A'B' и C'D', являющиеся ортогональными проекциями данных прямых АВ и CD на горизонтальную плоскость проекций

Профильная плоскость параллельна профильной плоскости проекций. На двухкартинном комплексном чертеже она изображается двумя следами: горизонтальным и фронтальным, перпендикулярными оси x.

Взаимное расположение двух плоскостей Две плоскости могут быть параллельными или пересекаться между собой.

Взаимное расположение прямой и плоскости

Условие видимости на чертеже Для большей наглядности невидимые части предмета вычерчивают штриховыми линиями (либо совсем не вычерчивают).

Главные линии плоскости Кроме прямых линий общего положения, в плоскости отмечают три главные линии: горизонтальную (горизонталь), фронтальную (фронталь) и линию наибольшего наклона. Эти линии применяют как вспомогательные: они упрощают решение задач. Две из них – горизонтальная и фронтальная – уже рассматривались.

Перпендикулярные плоскости Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Построение таких плоскостей может быть выполнено двумя путями:

Построение теней Основы теории теней Нанесением теней пользуются для придания проекционным чертежам большей наглядности. Особенно широко используются тени при оформлении архитектурных проектов, а также для решения ряда практических задач (например, для выявления освещенности наружных или внутренних частей сооружения при определенных условиях, для определения размеров сооружения по отбрасываемой им тени и т.п.).

Падающая тень от прямой линии Тень, падающая от прямой линии, состоит из падающих теней от всех ее точек. Лучи, проходящие через все точки прямой, образуют лучевую плоскость, а тень от прямой линии есть линия пересечения лучевой плоскости с плоскостью или поверхностью, на которую падает тень (то есть след лучевой плоскости).

Тень от плоской фигуры (непрозрачной пластинки) Чтобы построить падающую тень от плоской фигуры, ограниченной многоугольником, достаточно построить тени, падающие от всех сторон многоугольника.

Тень, падающая от одной фигуры на другую Метод обратных лучей

Метод следа светового луча (метод сечения лучевой плоскостью) Метод следа луча основан на том, что тень, падающая от точки, есть след проведенного через нее луча.

Тени цилиндра Чтобы построить контур собственной тени цилиндрической поверхности, необходимо провести к этой поверхности касательные лучевые плоскости, параллельные направлению лучей света, и найти линии касания (образующие цилиндра). Вдоль этих образующих пройдет контур собственной тени.

Тени пересекающихся многогранников (от здания) Выше говорилось, что тени делятся на собственные и падающие. Определение собственной тени сводится к нахождению ее контуров, то есть линий, отделяющих освещенную часть поверхности от неосвещенной.

Тени конуса

Тени на фасадах зданий Построение теней в нишах Тени от выступов

Методы преобразования комплексного черчежа В рассмотренных задачах определялось взаимное расположение в пространстве геометрических фигур. Такие задачи называют позиционными.

Способ вращения Сущность способа вращения также состоит в изменении положения объекта, заданного на комплексном чертеже (эпюре), таким образом, чтобы определенные его элементы заняли относительно плоскостей проекций частное положение и проецировались без искажения.

Линии и поверхности Линия – это множество всех последовательных положений движущейся точки.

В технической практике принято рассматривать образование поверхности (как и линии) с позиций кинематики – движения. Поверхность – это множество последовательных положений движущейся линии – образующей.

Поверхности линейчатые неразвертывающиеся Наиболее распространены в этой разновидности поверхностей поверхности Каталана или поверхности с двумя направляющими и плоскостью параллелизма. Образующие параллельны этой плоскости.

Поверхности нелинейчатые Различают нелинейчатые поверхности с образующей переменного вида и с образующей постоянного вида.

Поверхности параллельного переноса Поверхностью параллельного переноса называется поверхность, образованная параллельным переносом образующей линии.

Поверхности винтовые Винтовая поверхность получается винтовым перемещением образующей. Как известно, винтовое перемещение характеризуется вращением вокруг оси и одновременно поступательным движением, параллельным этой оси.

Пересечение плоскости с поверхностью многогранника Линией пересечения поверхности многогранника плоскостью является плоский многоугольник. Его вершины являются точками пересечения ребер с заданной плоскостью, а стороны – линиями пересечения граней с секущей плоскостью.

Конические сечения Коническими сечениями называются линии, которые получаются при пересечении поверхности конуса второго порядка с плоскостью. К числу этих линий относятся следующие: окружность, двойная прямая, две пересекающиеся прямые, эллипс, парабола, гипербола. Простейшим коническим сечением является точка.

Пересечение прямой лии с поверхностью Общие положения При пересечении прямой линии с поверхностью может получиться одна или несколько точек встречи, которые называются точками входа и выхода.

Взаимное пересечение поверхностей В пересечении поверхностей получаются плоские или пространственные линии, которые рассматриваются как множество точек, принадлежащих одновременно обеим поверхностям. Обычно линию пересечения двух поверхностей строят по ее отдельным точкам.

Способ секущих плоскостей Рассмотрим частный случай – способ вспомогательных ПРОЕЦИРУЮЩИХ плоскостей. Он заключается в следующем: вводится ряд плоскостей частного положения (уровня или проецирующих), пересекающих данные поверхности по графически простым линиям (прямым или окружностям). Пересечение этих линий между собой дает точки, которые будут общими для каждой из данных поверхностей и, следовательно, будут принадлежать искомой линии пересечения.

Пересечение поверхностей Способ концентрических сфер Этот способ применяется в случае, когда оси двух поверхностей вращения пересекаются под некоторым углом и находятся в плоскости, параллельной какой-либо плоскости проекций (особенно в том случае, когда на чертеже дана только одна проекция деталей).

Особые случаи пересечения. Теорема Монжа

Разверка поверхностей Под развертыванием следует понимать совмещение всей поверхности тела с плоскостью.

Пример. Построить развертку боковой поверхности эллиптического конуса с круговым основанием

Способ раскатки рекомендуется для построения развертки цилиндрической поверхности, когда ее образующие являются прямыми уровня, то есть параллельными одной из плоскостей проекций.

Способ конусов. Этот способ состоим в замене неразвертывающихся поверхностей такой другой поверхностью, которая составлена из нескольких конических и, следовательно, развертываемых элементов.

Сопромат, механика, информатика. Теория, практика, задачи Математика, физика