Начертательная геометрия Вычерчивание контуров деталей Аксонометрическая проекция Построение теней Методы преобразования комплексного черчежа Способ секущих плоскостей

Пересечение прямой лии с поверхностью

Общие положения

При пересечении прямой линии с поверхностью может получиться одна или несколько точек встречи, которые называются точками входа и выхода. Точки встречи прямой линии с поверхностью определяют так:

1) через прямую проводят проецирующую плоскость;

2) строят линию пересечения этой плоскости с заданной поверхностью;

3) находят точки встречи заданной прямой с линией пересечения.

Найденные точки будут искомыми. Вспомогательные плоскости проводят с расчетом получить в сечении простые линии: прямые или окружности. Рассмотрим примеры.

Пересечение прямой с поверхностью многогранника

На рис. 145 даны треугольная пирамида и прямая n общего

положения. Построить точки встречи прямой с поверхностью. В данном случае через прямую проведена фронтально-проецирующая плоскость Р. Эта плоскость пересекает боковую поверхность пирамиды по треугольнику 1-2-3.

Фронтальная проекция фигуры сечения сливается с фронтальной проекцией секущей плоскости (рис. ). Проекции вершин треугольника 1'', 2'', 3'' находятся на пересечении фронтальных проекций ребер пирамиды S''A'', S''B'', S''C'' с фронтальным следом секущей плоскости РV.

Горизонтальные проекции 1',2',3' точек сечения находятся по линиям связи (рис. 145).

Рис. 138

Соединяя найденные точки, получим горизонтальную проекцию фигуры сечения.

Прямая n, принадлежащая, как и треугольник 1-2-3, плоскости P, пересекается со сторонами этого треугольника в точках M и N, которые и являются искомыми точками встречи прямой с поверхностью пирамиды. По горизонтальным проекциям точек М и N (M',N') с помощью линий связи находим их фронтальные проекции M”и N”.

При определении видимости отдельных частей прямой n при проецировании этой прямой на плоскости H и V следует учесть видимость граней пирамиды на этих плоскостях проекций.

Пересечение прямой с поверхностью вращения

1. На рис. 146 даны цилиндр и прямая n общего положения.

Построить точки встречи прямой с поверхностью.

В данном случае через прямую удобнее провести горизонтально-проецирующую плоскость Р, которая рассечет цилиндр по прямоугольнику. Точки А и В будут искомые.

2. На рис. 147 даны конус и прямая m, перпендикулярная плоскости H. Построить точки встречи прямой с поверхностью.

В данном примере через прямую удобнее провести горизонтально-проецирующую плоскость Р, проходящую через вершину конуса, которая рассечет конус по треугольнику. Точки С и Д будуò искомые.

3. На рис. 148 даны шар и прямая l, параллельная горизонтальной плоскости проекций. Построение точек встречи прямой с поверхностью ясно из чертежа.

4. На рис. 149 даны тело вращения и прямая n общего положения, пересекающая ось тела. Построить точки встречи прямой с поверхностью.

Через заданную прямую проводим горизонтально-проецирующую плоскость Р и вращением вокруг оси поверхности совмещаем ее (вместе с прямой) с главной меридиональной плоскостью N. Находим смещенное положение n1 прямой n и смещенные проекции А1 и В1 точек А и В. Далее находим точки встречи на основных проекциях.

 

Рис. 139 Рис. 140

 

Рис. 141 Рис. 142

На сборочном чертеже указывают следующие группы исполнительных размеров: -монтажные: размеры, определяющие взаимное расположение составных частей сборочной единицы (размеры между осевыми линиями, размеры от баз до осей главных отверстий и других важнейших элементов собираемых деталей; размеры необходимые для правильной установки и закрепления отдельных деталей в узле, монтажные зазоры и др.); -размеры элементов деталей: размеры, которые выполняются в процессе или после сборки, например, путем механической обработки после сварки, клепки, пайки, запрессовки; -размеры сопрягаемых элементов деталей: размеры, которые обусловливают характер соединения (посадки), например, сопрягаемый размер с предельными отклонениями диаметра цилиндра и поршня;


Лекции по черчению