Начертательная геометрия Вычерчивание контуров деталей Аксонометрическая проекция Построение теней Методы преобразования комплексного черчежа Способ секущих плоскостей

Разверка поверхностей

Общие положения

Под развертыванием следует понимать совмещение всей поверхности тела с плоскостью.

РАЗВЕРТКОЙ называется фигура, в которую преобразуется при совмещении с плоскостью поверхность, подразумеваемая как гибкая, но нерастяжимая и несжимаемая пленка.

Развертываемые поверхности могут быть развертывающимися и неразвертывающимися.

К РАЗВЕРТЫВАЮЩИМСЯ относятся такие поверхности, которые могут быть совмещены с плоскостью без разрывов и складок. К этому типу относятся все многогранные поверхности. Разверткой многогранной поверхности является плоская фигура, полученная последовательным совмещением с одной и то же плоскостью всех ее граней. Поэтому построение развертки многогранной поверхности сводится к определению натурального вида ее отдельных граней.

Из кривых поверхностей к числу развертывающихся относятся только те линейчатые поверхности, у которых касательная плоскость во всех точках одной и той же образующей постоянна. Если же у линейчатой поверхности в различных точках одной и той же образующей разные касательные плоскости, то она не развертывается и называется косой поверхностью.

Таким образом, к числу развертывающихся линейчатых поверхностей относятся цилиндрические (рис. 163а), конические (рис. 163б) и торсы (рис. 163в).

Рис. 156

Все остальные кривые поверхности не развертываются на плоскость и поэтому при необходимости изготовления этих поверхностей из листового материала их приближенно заменяют развертывающимися поверхностями.

СВОЙСТВА РАЗВЕРТОК:

1) каждой точке поверхности соответствует единственная точка ее развертки;

2) длина линии на развертке равна длине соответствующей линии на поверхности;

3) на развертке сохраняются величины плоских углов.

Построение развертки может быть осуществлено различными способами, как аналитически, так и графически.

Аналитический способ

Этот способ заключается в нанесении на чертеж развертки всех предварительно вычисляемых размеров, необходимых для раскроя материала.

Цилиндр. Развертка боковой поверхности прямого кругового цилиндра (рис. 164) представляет собой прямоугольник, высота которого равна высоте цилиндра (H), а длина – длине окружности (диаметр d) основания.

Рис. 157

Конус. Развертка прямого кругового конуса (рис. 165) представляет собой сектор круга, радиус которого R равен длине образующей конуса, а центральный угол o определяется формулой:

 = 180o d / R .

Рис. 158

Способ триангуляции (треугольников)

Способ триангуляции (треугольников) применяется для построения разверток пирамидальных, конических и других линейчатых поверхностей, кроме цилиндрических.

Сущность способа сводится к многократному построению натурального вида треугольников, из которых состоит данная пирамидальная поверхность или многогранная поверхность, вписанная (или описанная) в данную коническую или линейчатую поверхность и заменяющая ее.

На сборочном чертеже указывают следующие группы исполнительных размеров: -монтажные: размеры, определяющие взаимное расположение составных частей сборочной единицы (размеры между осевыми линиями, размеры от баз до осей главных отверстий и других важнейших элементов собираемых деталей; размеры необходимые для правильной установки и закрепления отдельных деталей в узле, монтажные зазоры и др.); -размеры элементов деталей: размеры, которые выполняются в процессе или после сборки, например, путем механической обработки после сварки, клепки, пайки, запрессовки; -размеры сопрягаемых элементов деталей: размеры, которые обусловливают характер соединения (посадки), например, сопрягаемый размер с предельными отклонениями диаметра цилиндра и поршня;


Лекции по черчению