Начертательная геометрия Вычерчивание контуров деталей Аксонометрическая проекция Построение теней Методы преобразования комплексного черчежа Способ секущих плоскостей

Проекции проецирующих прямых

Проецирующей называется прямая, перпендикулярная к плоскости проекций.

Проецирующая прямая проецируется на одну плоскость проекций (перпендикулярную ей) в точку, а на другую – в прямую, перпендикулярную соответствующей оси.

Горизонтально-проецирующая прямая (рис. 19).

Это прямая, перпендикулярная к горизонтальной плоскости проекций. Ее горизонтальная проекция собирает горизонтальные проекции всех точек, принадлежащих этой прямой, например точек А и В.

Рис. 19

Фронтально-проецирующая прямая (рис. 20).

Это прямая, перпендикулярная к фронтальной плоскости проекций. Ее фронтальная проекция собирает фронтальные проекции всех точек, лежащих на данной прямой, например точек С и Д.

Рис. 20

Профильно-проецирующая прямая (рис. 21).

Это прямая, перпендикулярная к профильной плоскости проекций. Ее профильная проекция собирает профильные проекции всех точек, лежащих на этой прямой, например точек Е и F.

Рис. 21

 

Определение натуральной величины отрезка прямой общего положения

Отрезок прямой общего положения проецируется на плоскости проекций с искажением (в уменьшенном виде).

Натуральная величина отрезка на комплексном чертеже (обозначается Н.В.) строится как гипотенуза прямоугольного треугольника, первый катет которого равен одной из проекций отрезка, а второй катет равен разности расстояний от концов отрезка до той плоскости проекций, на которой взят первый катет (рис. 22), (рис. 23).

 
Рис. 22


Рис. 23

Натуральная величина угла наклона прямой к плоскости проекций может быть определена также способом прямоугольного треугольника.

На рис. 22 показано построение натуральной величины отрезка АВ и угла его наклона () к горизонтальной плоскости проекций с помощью прямоугольного треугольника, у которого первый катет – горизонтальная проекция А'B', а второй катет – разность расстояний от концов отрезка АВ до горизонтальной плоскости проекций, т.е. разность высот Dz.

На (рис. 23) дано построение натуральной величины отрезка АВ и угла его наклона  к фронтальной плоскости проекций с помощью прямоугольного треугольника, у которого первый катет – фронтальная проекция A''B'', а второй катет – разность расстояний от концов отрезка АВ до фронтальной плоскости проекций, т.е. разность глубин Dy (рис. 23).

Деление отрезка прямой в данном отношении

Точка делит отрезок прямой линии в пространстве в таком же отношении, в каком проекции точки делят одноименные с ними проекции отрезка (рис. 24).

Рис. 24

Так, например, надо разделить отрезок АВ в отношении 2:3, делящая точка лежит на отрезке (рис. 24).

По основному положению мы должны иметь:

КА/КВ = К'А'/К'В' = К''В''/К''В'' = 2/3

На чертеже сначала определяем горизонтальную проекцию К' точки, которая делит горизонтальную проекцию А'В' данного отрезка АВ в отношении 2:3. Для этого через точку А' проводим произвольную прямую, на которой от точки А' отложим пять равных произвольных отрезков (2+3=5). Далее соединяем прямой линией точки 5 и В' и проводим прямую 2К, параллельную прямой 5В'. Точка К' разделит отрезок А'В' в отношении 2:3. Проведя линию связи, находим фронтальную проекцию К'' искомой точки К. Точка К'' разделит отрезок А''В'' в отношении К''А''/К''В'' = 2/3.

Условности и упрощения на сборочном чертеже При выполнении сборочного чертежа необходимо пользоваться следующими правилами и условностями:1 Изображения (виды, разрезы, сечения) располагают в проекционной связи.2 Поверхности сопрягаемых деталей в местах их соприкосновения выполняются одной контурной линией. 3 Сплошные детали – оси, валы, болты, шпильки, винты, штифты, а также спицы и тонкие стенки, попадая в секущую плоскость, направленную вдоль оси и вдоль длинной стороны, не штрихуются.


Лекции по черчению