Лабораторные работы по электронике Исследование полевых транзисторов Исследование биполярных транзисторов Полупроводниковые выпрямители Электронный усилитель на транзисторах Исследование варикапов

В активном режиме эмиттерный p-n-переход находится в прямом включении, а коллекторный – в обратном. Включение биполярного транзистора с общей базой в активном режиме показано на рис. 2.5. Активный режим обеспечивается соответствующей полярностью напряжений, подключенных к эмиттеру (UЭБ) и коллектору (UКБ) и отсчитываемых относительно базы.

Поскольку концентрация дырок в эмиттере значительно больше концентрации  электронов в базе, то прямое включение эмиттерного p-n-перехода сопровождается  значительной инжекцией дырок в базу и незначительной инжекцией электронов из базы в эмиттер. Это обусловливает прохождение через эмиттерный p-n-переход диффузионных токов: дырочного IЭp и электронного IЭn. Следовательно, во внешней цепи проходит ток эмиттера

 

  (2.1) 

Отношение между составляющими тока эмиттера оценивается коэффициентом инжекции

Вследствие инжекции концентрация дырок в базе повышается и зависит от напряжения эмиттерного перехода. Концентрация инжектированных в базу дырок на границе эмиттерного перехода определяется выражением

  (2.2)

где pn0 – концентрация равновесных дырок в базе у эмиттерного перехода (при х = 0).

Таким образом, в результате инжекции дырок из эмиттера концентрация неосновных неравновесных носителей (дырок) в базе у границы с эмиттерным переходом изменяется и может значительно превышать равновесную концентрацию.

Из анализа рис. 2.6, где w – ширина базы, и формулы (2.2) следует, что градиент концентрации дырок зависит от значений напряжения UЭБ, т.е. от pБЭ. Под действием градиента концентрации происходит диффузионное движение инжектированных дырок через базу от эмиттера к коллектору. В процессе диффузионного движения часть дырок, не дойдя до коллекторного перехода, рекомбинирует с электронами. На место рекомбинировавших электронов в базу из внешней цепи (от источника UЭБ) поступают электроны, создавая совместно с электронами, уходящими из базы в эмиттер, ток базы рекомбинации IБ рек. Так как в базе концентрация электронов существенно  ниже концентрации дырок, инжектированных из эмиттера, то вероятность полной рекомбинации мала и, если диффузионная длина дырок в базе Lp значительно больше толщины базы w, основная часть дырок достигает коллекторного перехода.

Дырки, инжектированные  из эмиттера в базу и достигшие коллекторного p-n-перехода, попадают в его ускоряющее поле и перебрасываются (экстрагируются) в коллекторную p-область, создавая ток  коллектора IКp. При этом, из-за процессов рекомбинации в базе, ток IКp меньше тока эмиттера IЭp. Процесс переноса неосновных неравновесных носителей через базу оценивается коэффициентом переноса ξ, определяемым отношением IКp к IЭp. Анализ показывает, что значение ξ зависит от ширины базы w, диффузионной длины дырок и определяется по формуле

ξ = IКp / IЭp = 1 – w2/(2Lp2).

Экстракция дырок может сопровождаться ударной ионизацией атомов полупроводника и лавинным умножением носителей заряда в коллекторном переходе. Дырки, попавшие в коллектор в результате экстракции и ударной ионизации, нарушают его электрическую нейтральность, что вызывает приток электронов от внешнего источника UКБ. Движение этих электронов определяет прохождение тока IК1 в цепи коллектора. Процесс умножения носителей заряда в коллекторном переходе оценивается коэффициентом умножения коллекторного тока

М = IК1 / IКp.

Чем больше дырок инжектируется эмиттером, тем большее их количество экстрагирует в коллектор, увеличивая его ток. Следовательно, ток IК1 пропорционален току эмиттера (h21БIЭ) и называется управляемым током коллектора. Возможность управления выходным током транзистора путем изменения входного тока является важным свойством биполярного транзистора, позволяющим использовать его в качестве активного элемента различных радиотехнических схем. Величина h21Б характеризует управляющие свойства транзистора и определяется как отношение управляемого тока коллектора к полному току эмиттера:

h21Б = IК упр / IЭ = IК1 / IЭ

и называется статическим коэффициентом передачи тока эмиттера. Очевидно, что чем ближе значение h21Б к единице, тем лучше управляющие свойства транзистора.

При рассмотренной полярности включения внешнего источника UКБ (рис. 2.5) его напряжение является обратным для коллекторного p-n-перехода. Поэтому через коллекторный переход, кроме тока, обусловленного экстракцией дырок из базы в коллектор, проходит ток неосновных носителей базы и коллектора, направленный из базы в коллектор. Природа этого тока аналогична природе обратного тока полупроводникового диода, вследствие чего он получил название обратного тока коллектора и обозначается IКБ0. Этот ток проходит от источника UКБ через базу, коллекторный переход и коллектор на источник UКБ. Направление обратного тока коллектора совпадает с направлением управляемого коллекторного тока, следовательно,

 IК = h21Б IЭ + IКБ0. (2.3)

Обратный ток коллектора в цепи базы направлен навстречу току IБ рек, поэтому общий ток базы определяется как:

 IБ = IБ рек - IКБ0. (2.4)

Ток эмиттера транзистора является суммой трех составляющих: h21БIЭ, IЭn и IБ рек, поэтому для нахождения тока IЭ можно воспользоваться следующим соотношением:

 IЭ = h21Б IЭ + IБ рек + IКБ0 - IКБ0 + IЭn. (2.5)

 

С учетом уравнений (2.3) и (2.4) равенство (2.5) преобразуется к виду

 IЭ = IБ + IК. (2.6) 

Это выражение устанавливает связь между токами транзистора и справедливо для любой схемы включения. Из уравнений (2.3) и (2.6) следует: 

 IБ = IЭ - IК = (1 - h21Б) IЭ - IКБ0.  (2.7)

Направление тока базы зависит от соотношений между слагаемыми уравнения (2.7). Обычно в активном режиме выполняется условие (1 - h21Б) IЭ > IКБ0. Распределение токов для этого случая показано на рис. 2.5.

Статическими характеристиками транзисторов  называют графики, выражающие функциональную связь между токами и напряжениями транзистора. В зависимости от того, какие токи и напряжения принимаются за независимые переменные, возможны различные системы функциональной связи и соответствующие им семейства статических характеристик.

Среди этих семейств характеристик наибольшее распространение получили статические характеристики, относящиеся к «гибридной» системе, или Н-системе, в которой в качестве независимых переменных приняты входной ток и выходное напряжение:

Uвх = f (Iвх , Uвых );

Iвых = f (Iвх , Uвых ).

В статическом режиме эти зависимости выражаются четырьмя семействами характеристик:

входными

Uвх = f (Iвх )|Uвых = const ;

выходными

Iвых = f (Uвых )|Iвх = const ;

обратной связи

Uвх = f (Uвых )|Iвх = const ;

прямой передачи

Iвых = f (Iвх )|Uвых = const .

За последний период развития в области связи, наибольшее распространение получили оптические кабели (ОК) и волоконно-оптические системы передачи (ВОСП) которые по своим характеристикам намного превосходят все традиционные кабели системы связи. Связь по волоконно-оптическим кабелям, является одним из главных направлений научно-технического прогресса. Оптические системы и кабели используются не только для организации телефонной городской и междугородней связи, но и для кабельного телевидения, видеотелефонирования, радиовещания, вычислительной техники, технологической связи и т.д.
Методические указания к выполнению лабораторных работ по электронике