Лабораторные работы по электронике Исследование полевых транзисторов Исследование биполярных транзисторов Полупроводниковые выпрямители Электронный усилитель на транзисторах Исследование варикапов

Измерение усилий и деформаций с использованием тензорезисторных преобразователей

1. Цель работы, ее краткое содержание

1.1. Целью настоящей работа является изучение принципа действия тензорезисторных преобразователей и приобретение практических навыков работы с тензометрической установкой, предназначенной для измерения механических сил и деформаций.

1.2. В процессе выполнения работы студенты собирают электрическую схему тензометрической установки, определяют ее градуировочную характеристику, а затем определяют неизвестные веса и массы деталей.

2. Основные сведения о тензорезисторах

В основе принципа действия тензорезисторов лежит явление тензоэффекта, заключающееся в изменении электрического сопротивления проводников и полупроводников при их механической деформации.

Сопротивление R резистора, выполненного в виде проволоки длиной l, определяется известным выражением.

  (1)

где r - удельное сопротивление материала проволоки;

S - площадь поперечного сечения проволоки. Дифференцируя выражение (1) и переходя к конечным приращениям, получим, что продольной упругой деформации проволоки соответствует относительное изменение ее сопротивления

  (2)

где DR, Dr, DS - абсолютные приращения сопротивления, удельного сопротивления, длины и площади поперечного сопротивления проводника соответственно.

В твердом теле в зоне упругих деформаций величины поперечных и продольных деформаций связаны выражением

 (4)

где  - значение относительной продольной деформации;

 - значение относительной поперечной деформации;

в - поперечный размер проводника; m - коэффициент Пуассона.

С учетом выражений (2) и (4) величина относительного изменения проводника диаметром d и длиной l.

  (5)

Качество тензорезистора определяется его коэффициентом тензочувствительности K и величиной температурного коэффициента сопротивления /ТКС/ . Коэффициент тензочувствительности K определяется отношением

 (6)

Чем выше коэффициент тензочувствительности К и меньше температурный коэффициент сопротивления (ТКС) материала, из которого изготовлен тензорезистор, тем выше его качество.

Чаще всего проволочные тензорезисторы изготавливаются из сплавов константан и манганин, у которых К»2 и ТКС=±30*10-6K-1 и ±10*10-6K-1 соответственно.

Если положить в (5), что , то .

Устройство наиболее распространенного типа наклеиваемого проволочного тензорезистора изображено на рис.1,а. На полоску тонкой бумаги или лаковой пленки 1 наклеивается так называемая решетка из зигзагообразно уложенной тонкой проволоки 2 диаметром 0,02 - 0,05 мм. К концам проволоки присоединяются (пайкой или сваркой) выводные медные проводники 3. После высыхания слоя клея сверху преобразователь покрывается защитным слоем лака 4. Если такой преобразователь наклеить на поверхность испытуемой детали, то он будет воспринимать деформации ее поверхностного слоя. Измерительной базой преобразователя является длина детали, занимаемая проволокой. Наиболее часто используются проволочные преобразователи с базами 5-20 мм, обладающие сопротивлением 50-500 Ом.

Рис.1. Конструкции тензорезисторных преобразователей

Тензопреобразователи с решеткой из фольги (рис.1,б) получаются путем химического травления фольги 2 толщиной 4~ 12 мкм, нанесенной сплошным слоем на поверхность подложки 1из непроводящего материала. Фольговые преобразователи имеют меньшие габариты, чем обычные проволочные и могут иметь базу L 0,5-5 мм.

Металлические пленочные тензорезисторы изготовляются путем напыления в вакууме на поверхность тонкой подложки слоя тензо-чувствительного материала с последующим травлением слоя проводящего материала с целью формирования решетки тензорезистора. Пленочные тензорезисторы имеют толщину 1 мкм и менее, базу 0,1-0,5 мм и конфигурацию, аналогичную фольговым тензорезисторам (рис. 1,б).

В настоящее время в практику измерений все шире стали внедряться интегральные полупроводниковые тензорезисторы имеющие коэффициент тензочувствительности К»50-200. Непосредственно па упругом элементе, выполненном из кремния или салфира, с использованием планарной технологии микроэлектроники формируется тензорезистор из монокристаллического кремнии. Такие тензорезисторы обеспечивают большую точность преобразования, чем пленочные или фольговые, поскольку между поверхностью упругого элемента и решеткой тензорезистора отсутствует слой клея, являющиеся источником погрешностей при передаче деформаций от упругого элемента к тензорезистору.

Наиболее распространенной измерительной целью для тензорезисторов является мостовая измерительная схема, работающая в неравновесном режиме.

На рис.2,а приведена мостовая схема, в которой в качестве одного плеча включен тензорезистор R1, а остальные три плеча моста являются постоянными фиксированными резисторами R2, R3, R4. Схема питается от источника постоянного напряжения Е. С измерительной диагонали моста снимается напряжение UM, которое может быть подано на измерительный прибор или регистратор. Приведенная схема неравновесного измерительного моста обладает значительной температурной погрешностью. Тензорезистор R1 располагается непосредственно на объекте измерения, а резисторы R2, R3, R4 - в блоке вторичной аппаратуры, содержащей усилители, блоки питания, показывающие приборы, удаленном от объекта измерения и находящимся в других климатических условиях. При изменении температуры поверхности объекта измерения будет изменяться сопротивление тензорезистора R1, что. приведет к изменению выходного напряжения UН мостовой схемы при отсутствии упругой деформации решетки тензорезистора.

Рис.2. Схемы включения тензорезисторов

При дифференциальном включении двух идентичных тензорезисторов R1 и R2 в два соседних плеча моста (рис. 2,б) удается понизить температурную погрешность нуля в 10-20 раз по сравнению с предыдущей схемой включения.

Пример физической реализации дифференциальной мостовой схемы измерения представлен на рис.2,в. На поверхности консольно закрепленной упругой, балки 1 наклеены тензорезисторы R1 и R2, которые включены в качестве плеч мостовой измерительной схемы и имеет равные сопротивления (R1=R2). При равенства сопротивлений двух других плеч моста (R3 и R4) выходной сигнал с измерительной диагонали моста равен нулю (DUM=0).

При воздействии на конец консольной балки измеряемого усилия Р¹0 балка прогнется (см. пунктирное изображение балки на рис.2,в), что приведет к появлении упругих деформаций и напряжений растяжения на верхней поверхности балки и напряжений сжатия на нижней ее поверхности. Упругие деформации балки будут восприняты наклеенными тензорезисторами и их сопротивления изменятся соответственно до значений R1+DR и R2-DR (рис.2,б и 2,в). При этом на выходе мостовой схемы появится напряжение DUM функционально связанное с измеряемым усилием Р. При идентичных параметрах тензорезисторов погрешность нуля, обусловленная изменением их активного сопротивления вследствие изменения температуры балки, будет близко к нулю, поскольку абсолютные значения приращений сопротивлений DR1 и DR2 будут равны и не вызовут разбаланса мостовой схемы, а, следовательно, и дополнительного приращения выходного напряжения UM.

С целью уменьшения влияния изменения температуры окружающей среды на чувствительность мостовой схемы довольно часто в качестве пассивных плеч мостовой схемы R3 и R4 также используются тензорезисторы, расположенные на объекте измерения или рядом с ним, но не воспринимающие измеряемых упругих деформаций.

В инженерной практике выходной сигнал с диагонали неравновесного моста подается на вход электронного усилителя, а затем на измерительный прибор или регистратор, в качестве которого может быть использован электромеханический светолучевой осциллограф.

На структурной схеме (рис.3) представлены возможные варианты использования выходного сигнала мостовой измерительной схемы с двумя тензорезисторами, включенными в плечи моста по дифференциальной схеме.

Под действием измеряемого усилия деформируется упругий чувствительный элемент, в качестве которого в данной лабораторной работе используется балка равного сопротивления, в других же случаях это может быть деталь любой формы, на поверхность которой наклеиваются тензорезисторы.

Рис.З.Структурная схема тензометрического измерительного устройства.

УС - электронный усилитель (усилитель постоянного тока), ЦВ - цифровой вольтметр, ЦПУ - цифропечатающее устройство, АЦП - аналого-цифровой преобразователь, ЭВМ - электронно-вычислительная машина, ЭВ - электронный вольтметр аналогового типа, ЭМО - электромеханический светолучевой осциллограф

Выходной сигнал мостовой неуравновешенной схемы подается на вход электродного усилителя УС с постоянным и известным коэффициентом усиления.

Выходное напряжение неравновесного моста при условии, что в состоянии равновесия сопротивления всех плеч равны R0, а напряжение источника питания E=const , определяется выражением

  (8)

где RН - сопротивление нагрузки на выходе мостовой схемы, т.е. входное сопротивлений УС; относительное изменение сопротивления каждого из тензометров.

Для подавляющего большинства усилителей постоянного тока можно принять, что их входное сопротивление RН>>R0 тогда на основании предыдущего выражения имеем

т.е. между измеряемой деформацией (усилием), вызывающей изменение сопротивления тензорезисторов со значения R0=R1=R2 до значений R0±DR, и выходным напряжением мостовой схемы существует практически линейная зависимость.

Выходной сигнал усилителя UВЫХ (рис.3), имеющего коэффициент усиления по напряжению КУ будет равен

 (10)

и в зависимости от требуемой формы представления результата измерения может быть подан на вход различных измерительных и преобразующих устройств.

Для представления результата измерения в цифровой форме UВЫХ измеряется цифровым вольтметром ЦВ (рис.3), выход которого может быть подсоединен к самостоятельному цифропечатающему устройству ЦПУ с целью обеспечения документальной регистрации результатов измерения.

В том случае, если выходную информацию необходимо обрабатывать по заданному алгоритму, UВЫХ подается на аналого-цифровой преобразователь АЦП (рис.3), с выхода которого информативный сигнал в виде кода подается на ЭВМ. Обработанные результаты эксперимента выводятся на цифропечатающее устройство ЦПУ.

Выходное напряжение усилителя может быть измерено аналоговым электронным вольтметром ЭВ.

В инженерной практике чаще всего UВЫХ фиксируется на фотобумаге или кинопленке посредством электромеханического светолучевого осциллографа ЭМО.

При всем многообразии задач, решаемых с помощью тензорезисторов, можно выделить две основные области их применения.

Первая область - применение тензорезисторов для измерения механических величин (сил, перемещений, давлений), преобразуемых в деформацию упругого элемента, величина которой измеряется с помощью тензорезисторов.

В этом случае имеется возможность индивидуальной градуировки тензорезистивного преобразователя, на основе которой строится его градуировочная характеристика. Текущее значение измеряемой величины определяется с использованием градуировочной характеристики. Погрешности измерений лежат в диапазоне 0,05% - 0,5%.

Вторая область применения - исследование деформаций и механических напряжений в деталях и элементах конструкций. Например, в различных точках тонкой оболочки, подвергаемой сложным нагружениям. Примером такой оболочки может служить фюзеляж современного самолета или корпус современной вакуумной установки. Для решения этих задач характерны значительное число точек тензометрирования (до сотен и даже тысяч), широкие диапазоны изменения измеряемых деформаций или напряжений и отсутствие возможности градуировки измерительных каналов. В связи с последним обстоятельством всем тензометрам приписывается осредненная градуировочная характеристика. Основной причиной погрешности в этих случаях является разброс значений сопротивлений конкретных экземпляров тензорезисторов R1, R2 и значений коэффициентов тензочувствительности КТ относительно средних для данной партии значений. В связи с этим суммарная погрешность измерений составляет 2 – 10%.

Тензорезисторы применяются для измерения как статических, так и динамических деформаций. Верхняя граница частотного диапазона определяется соотношением между базой тензометра l и длиной волны l упругой деформации в материале исследуемого элемента. Эnо соотношение рекомендуется поддерживать в пределах l/l£0,1 Практически частота регистрируемых процессов может лежать в диапазоне 0 - 100 кГц.

Формирование навыков исследовательской работы, получения и обработки экспериментальных результатов, а также умения моделирования физических процессов при решении конкретных физических задач
Методические указания к выполнению лабораторных работ по электронике