Курс лекций по строительной механике Расчет многопролетных статически определимых балок Расчет распорных систем Расчёт трёхшарнирной арки Правило П. Верещагина

Расчёт стержневых конструкций на действие подвижной нагрузки

К подвижной нагрузке, оказывающей внешнее силовое воздействие на сооружения, относят автомобильный и железнодорожный транспорт, мостовые краны и т.д.

Особенностью расчёта сооружений на подвижную нагрузку является то, что для оценки напряжённо-деформированного состояния во всех поперечных сечениях по длине сооружения необходимо фиксировать бесконечно большое число раз подвижную нагрузку, превращая её в статическую. Такой расчёт, естественно, нерационален. Поэтому при расчёте сооружений на подвижную нагрузку не строят эпюры внутренних усилий, описывающих их изменение по длине сооружения.

Для решения этой задачи в строительной механике разработан аппарат линий влияния. Линией влияния называется график изменения какого-либо параметра (момент, сила, напряжение, перемещение и т.д.) в зависимости от положения безразмерной силы Таким образом, линия влияния (л.в.) описывает изменение изучаемого параметра в каком-то конкретном сечении. Физический смысл ординаты л.в. заключается в том, что такая ордината описывает величину того параметра л. в., для которого она построена (рис. 2.4).

Линии влияния опорных реакций

Известно, что любой расчёт конструкции начинают с определения опорных реакций. Не является исключением и расчёт, связанный с построением линий влияния.

Рассмотрим построение линий влияния опорных реакций для двухопорной балки. Поместим на неё силу , движение которой по балке будем описывать изменением координаты х (см. рис. 2.4). При фиксированном положении силы составим уравнение моментов относительно шарнира В, как и при обычном расчёте:

RA  - F( - х) = 0  RA = F. (2.1)

Из анализа выражения (2.1) очевидно, что оно описывает прямую линию. Тогда из (2.1) при х = 0 и с учётом найдём, что RA = 1, а при х= RA = 0. Составляя аналогичное уравнение моментов относительно шарнира А, можно построить линию влияния опорной реакции RB. В строительной механике принято положительные ординаты линии влияния откладывать вверх от базовой линии.

Лекции по сопромату для студентов строительных специальностей Расчет рамы на динамическое действие нагрузки Рассмотрим статически определимую раму, на горизонтальном элементе которой находятся колеблющиеся массы.

 Эти же линии влияния можно построить, вообще не осуществляя аналитических выводов. Ясно, что в тот момент времени, когда подвижная сила окажется над опорой А, будет восприниматься только опорой А, опорная реакция которой будет равна 1, тогда как опорная реакция на опоре В в этот же момент времени будет равна 0. При этом известно, что если между двумя шарнирами нет нагрузки, то любое внутреннее усилие на таком участке стержня будет изменяться по закону прямой линии.

Если рассматривать балку с двумя консолями (рис. 2.5), то уравнения для реакции будут такими же, что и для балки без консолей.

Учитывая, что зависимость между опорными реакциями RA и RB и координатой х является функцией первой степени (см. выражение (2.1), то, продолжая прямые линии на консоли, получают линии влияния опорных реакций RA и RB. Форма линий влияния RA и RB и значения их ординат показаны на рис. 2.5.

 


 


Построим линии влияния опорных реакций защемлённой балки, изображённой на рис. 2.6. В защемлении возникают две опорные реакции: МА и RA. Из условия равновесия А = 0 получаем МА +

+Fх =0  МА = -х. Тогда при х = 0 МА = -. Из уравнения проекций   F + RA  0  RA = 1.

 На рис. 2.6 показаны формы и значения ординат линий влияния опорных реакций МА и RA для консольной балки.

Механическое состояние не изменится, если освободить ее от связей, приложив к точкам системы силы, равные реакциям связей. Эту аксиому называют аксиомой о связях. Материальные тела, ограничивающие перемещение данного тела в пространстве, называют связями. Сила, с которой связь действует на тело, препятствуя его перемещениям, называется силой реакцией связи, или просто реакцией связи.
Основная система метода сил